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Using ALoFT to determine the impact of putative
loss-of-function variants in protein-coding genes
Suganthi Balasubramanian1,2,6, Yao Fu1,7, Mayur Pawashe2, Patrick McGillivray2, Mike Jin 2, Jeremy Liu2,

Konrad J. Karczewski 3,4, Daniel G. MacArthur3,4 & Mark Gerstein1,2,5

Variants predicted to result in the loss of function of human genes have attracted interest

because of their clinical impact and surprising prevalence in healthy individuals. Here,

we present ALoFT (annotation of loss-of-function transcripts), a method to annotate and

predict the disease-causing potential of loss-of-function variants. Using data from Mendelian

disease-gene discovery projects, we show that ALoFT can distinguish between loss-of-

function variants that are deleterious as heterozygotes and those causing disease only in the

homozygous state. Investigation of variants discovered in healthy populations suggests that

each individual carries at least two heterozygous premature stop alleles that could potentially

lead to disease if present as homozygotes. When applied to de novo putative loss-of-function

variants in autism-affected families, ALoFT distinguishes between deleterious variants in

patients and benign variants in unaffected siblings. Finally, analysis of somatic variants in

>6500 cancer exomes shows that putative loss-of-function variants predicted to be dele-

terious by ALoFT are enriched in known driver genes.
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One of the most notable findings from personal genomics
studies is that all individuals harbor loss-of-function
(LoF) variants in some of their genes1. A systematic study

of LoF variants from the 1000 Genomes Project revealed
that there are over 100 putative LoF (pLoF) variants in each
individual2–4. Recently, a larger study aimed at elucidating rare
LoF events in 2636 Icelanders generated a catalog of 1171 genes
that contain either homozygous or compound heterozygous
LoF variants with a minor allele frequency less than 2%5.
Thus, several genes are knocked out either completely or in
an isoform-specific manner. The discovery of protective LoF
variants associated with beneficial traits and their potential to
enable identification of valuable drug targets has fueled
an increased interest in pLoF variants. For example, nonsense
variants in PCSK9 are associated with low low-density lipoprotein
(LDL) levels6, which prompted the active pursuit of the inhibition
of PCSK9 as a potential therapeutic for hypercholesterolemia7, 8

and led to the development of two drugs that have been recently
approved by the FDA. Other examples include nonsense
and splice mutations in APOC3 associated with low levels of
circulating triglycerides, a nonsense mutation in SLC30A8
resulting in about 65% reduction in risk for Type II diabetes,
two splice variants in the Finnish population in LPA that protect
against coronary artery disease, and two LoF-producing splice
variants and a nonsense mutation in HAL associated with
increased blood histidine levels and reduced risk of coronary
artery disease9–12.

About 12% of known disease-causing mutations in the
Human Gene Mutation Database (HGMD) are due to nonsense
mutations13. Even though premature stop variants often lead to
loss of function and are thus deleterious, predicting the functional
impact of premature stop codons is not straightforward. Aberrant
transcripts containing premature stop codons are typically
removed by nonsense-mediated decay (NMD), an mRNA
surveillance mechanism14. However, a recent large-scale
expression analysis demonstrated that 68% of predicted
NMD events due to premature stop variants are unsupported by
RNA-Seq analyses15. Moreover, premature stop codons in the last
exon are generally not subject to NMD. A study aimed at
understanding disease mutations using a 3D structure-based
interaction network suggests that truncating mutations can
give rise to functional protein products16. Furthermore, when a
variant affects only some isoforms of a gene, it is difficult to
infer its impact on gene function without the knowledge of the
isoforms that are expressed in the tissue of interest and how their
levels of expression affect gene function. Finally, loss of function
of a gene might not have any impact on the fitness of the
organism.

While there are several algorithms to predict the effect of
missense coding variants on protein function, there is a paucity
of methods that are applicable to nonsense variants17–19.
Additionally, current prediction methods that infer the
pathogenicity of variants do not take into account the zygosity
of the variant20, 21. The majority of pLoF variants in healthy
cohorts are heterozygous. It is likely that a subset of these variants
will cause disease as homozygotes.

Here we present a pipeline called ALoFT (Annotation of
Loss-of-Function Transcripts), that provides extensive
annotation of pLoF variants. Furthermore, we developed a
prediction model to classify pLoF variants into three classes:
those that are benign, those that lead to recessive disease
(disease-causing only when homozygous) and those that lead
to dominant disease (disease-causing as heterozygotes).
Finally, we validated the prediction model by applying ALoFT
to known disease mutations in Mendelian diseases, autism,
and cancer.

Results
ALoFT pipeline. We have developed a pipeline called ALoFT to
annotate pLoF variants. In this study, we included premature
stop-causing single-nucleotide polymorphisms (SNPs),
frameshift-causing indels and variants affecting canonical splice
sites as pLoF variants, also referred to as protein truncating
variants. An overview of the pipeline is shown in Supplementary
Fig. 1. The main features of ALoFT include (1) functional domain
annotations; (2) evolutionary conservation; and (3) biological
networks. For comprehensive functional annotation, we
integrated several annotation resources such as PFAM
and SMART functional domains22, 23, signal peptide and
transmembrane annotations, post-translational modification
sites, NMD prediction24, 25, and structure-based features such
as SCOP domains and disordered residues. For evolutionary
conservation, ALoFT outputs variant position-specific GERP
scores, which is a measure of evolutionary conservation26

and dN/dS values (ratio of missense to synonymous substitution
rates) for macaque and mouse that are computed from
human-macaque and human-mouse orthologous alignments,
respectively. In addition, we evaluated if the region removed
due to the truncation of the coding sequence is evolutionarily
conserved based on constrained elements27. ALoFT includes
network features shown to be important in disease
prediction algorithms: a proximity parameter that gives the
number of disease genes connected to a gene in a protein–protein
interaction network and the shortest path to the nearest disease
gene2, 28. The pipeline also includes features to help identify
erroneous LoF calls, potential mismapping, and annotation
errors, because LoF variant calls have been shown to be enriched
for annotation and sequencing artifacts2. A description of all
the annotations provided by ALoFT is included in Supplementary
Table 1 (details in Methods). Documentation and link to source
code can be found at aloft.gersteinlab.org.

Using the annotations output by ALoFT as predictive features
(Fig. 1, Supplementary Data 1), we developed a prediction
method to infer the pathogenicity of pLoF variants. To build
the ALoFT classifier, we used three classes of premature
stop variants as training data: benign variants, dominant
disease-causing variants, and recessive disease-causing
variants (Supplementary Table 2). The benign set includes
homozygous premature stop variants discovered in a cohort
of 1092 healthy people, Phase1 1000 Genomes data (1KG).
Homozygous premature stop mutations from HGMD that
lead to recessive disease and heterozygous premature stop
variants in haplo-insufficient genes that lead to dominant
disease represent the two disease classes3, 28. In addition to
loss-of-function effects, truncating mutations can also lead to
gain of function. However, gain-of-function mutations are
difficult to model systematically as the effect of a variant can
only be understood in the context of the biology of the gene and
can vary widely for different genes and gene classes. In order to
minimize errors that might arise due to inadequate modeling of
gain-of-function effects and to focus on LoF, we only use
predicted haploinsufficient genes as the training data for the
dominant model. We built the ALoFT classifier to distinguish
among the three classes using a random forest algorithm29

(details in Methods). For each mutation, ALoFT
provides three class probability estimates, and we obtain good
discrimination between each class. The prediction output
provides the three scores for each pLoF variant that correspond
to the probability of the pLoF being benign, dominant
or recessive disease-causing allele. In addition, ALoFT also
provides the predicted pathogenicity. The pathogenic effect of
pLoF variant is assigned to the class that corresponds to the
maximum score.
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Evaluation of the classifier. The average multiclass test area
under the curve (AUC) with 10-fold cross-validation is 0.97.
The precision for the three classes are as follows: dominant=
0.86, recessive= 0.86, and benign= 0.96. The recall for the
three classes are as follows: dominant: 0.71; recessive: 0.95; and
benign: 0.96.

The classifier is robust to the choice of training data sets
(Supplementary Table 3, details in Methods). Though trained
with premature stop SNVs, our method is also applicable to
frameshift indels. We applied ALoFT to classify pathogenic
indels in HGMD. 99.4% of HGMD disease-causing frameshift
indels are predicted to be pathogenic based on the maximum
ALoFT score.

We analyzed the importance of the various features to the
classification (Supplementary Fig. 2). The global allele frequency
of variants in the Exome Aggregation Consortium, ExAC, a data
set comprising sequence variations obtained from an analysis of
60,706 unrelated individuals of diverse ethnicities (ExAC30,
http://exac.broadinstitute.org), appears to be the most important
feature for classification. When we removed this feature and other
features related to allele frequency (i.e., features related to variants
in both ExAC and Exome Sequencing Project, ESP) and retrained
the random forest model, the classifier still performs well with an

average multiclass test AUC of 0.93. (The precisions for the three
classes are as follows: dominant= 0.84, recessive = 0.80, and
benign= 0.75). We also systematically evaluated the classifier
using models trained on varying sets of features (Supplementary
Table 4). Overall, we find that the classification is not driven by
any single feature and integrating many features improves
prediction accuracy.

Validation of the classifier. We applied ALoFT to elucidate
the pathogenicity of pLoF variants in various disease scenarios.
Using case studies, we show that ALoFT provides robust
predictions for the effect of pLoFs.

Understanding pLoFs in Mendelian disease. We evaluated
ALoFT by predicting the effect of known disease-causing
premature stop mutations from ClinVar31 (details in Methods)
and predicted the mode of inheritance and pathogenicity of all of
truncating variants (Fig. 2a). ALoFT is clearly able to distinguish
between pLoFs that lead to disease in a heterozygous state vs.
those that do so only in a homozygous state. Our method shows
that heterozygous disease-causing variants have significantly
higher dominant disease-causing scores than the homozygous
disease-causing variants (p-value: 1.3e-13; Wilcoxon rank-sum
test). We used two other measures, GERP score, which is a
measure of evolutionary conservation, and CADD score,
which gives a measure of pathogenicity, to classify recessive vs.
dominant pLoF variants32. Both CADD (p-value: 0.13; Wilcoxon
rank-sum test) and GERP (p-value: 0.49; Wilcoxon rank-sum
test) scores are not able to discriminate between recessive
and dominant disease-causing mutations (Fig. 2a). We also
tested our method on a smaller data set from the Center
For Mendelian Genomics studies33 and were able to correctly
recapitulate the pathogenic effect of pLoF variants and their
inheritance pattern (Fig. 2b).

Understanding de novo pLoFs implicated in autism. De novo
pLoF SNPs have been implicated in autism based on analysis of
sporadic or simplex families (families with no prior history of
autism)34–37. We applied our method to de novo pLoF mutations
discovered in these studies. Each individual carries about one de
novo premature stop variant (Supplementary Table 5).
Our method shows that the proportion of dominant
disease-causing de novo LoF events is significantly higher
in autism patients vs. siblings of patients with autism (Fig. 3a;
p-value: 8.4e−4; Wilcoxon rank-sum test).

Autism spectrum disorder is known to be four times more
prevalent in males than in females suggesting a protective effect in
females. Previous studies show that a higher mutational burden of
non-synonymous mutations is ascertained in females with autism
spectrum disorder38. Therefore, we investigated differences in the
impact of de novo pLoF variants in male vs. female autism
patients. We observed a similar pattern for pLoF mutations as
has been found for missense variants—female probands have a
higher proportion of predicted deleterious de novo pLoF variants
than male probands (Fig. 3a; p-value: 0.03; Wilcoxon rank-sum
test). Supplementary Data 2 includes the ALoFT predictions
for de novo pLoF variants. A recent study based on exome
sequencing of 3871 autism cases delineated 33 risk genes at FDR
< 0.139. We observed that de novo pLoF mutations in the 33
risk genes of the autism patients have higher dominant
disease-causing scores than the de novo pLoF variants in
other genes (Fig. 3b; p-value: 5e−3; Wilcoxon rank-sum test).
Thus, ALoFT predictions corroborate the role of de novo pLoF
variants in autism as shown by others using entirely different
approaches.

Input
VCF file

Pathogenicity prediction

Annotate pLoF variants
with variant and transcript-specific features

Segmental duplication;
pseudogene; paralog

Non-canonical splice site;  
LoF position...

NMD prediction; loss of functional, structural
domains, disordered regions, post translational
modification sites; gene expression in GTex...

Functional

GERP score; dN/dS; 1000G, ESP6500 allele
frequency; heterozygosity of genes...

Conservation

Shortest path to disease genes; network
centralities... 

Network

Mismapping

Annotation issue

Output
Annotated features for pLoFs

3 pathogenicity scores for premature stop and frameshift variants

Prediction model
Trained on benign, dominant and recessive
disease-causing premature stop mutations

chr    pos     ref  alt          effect             gene    dominant   benign   recessive    prediction   Confidence    

1  866453   C    T    prematureStop   SAMD11    0.02        0.06          0.92      Recessive         High

e.g.

Fig. 1 Schematic workflow. ALoFT uses a VCF file as input and annotates
premature stop, frameshift-causing indel and canonical splice-site
mutations with functional, conservation, and network features. ALoFT also
flags potential mismapping and annotation errors. Using the annotation
features, ALoFT predicts the pathogenicity (as either benign, recessive, or
dominant disease-causing) of premature stop and frameshift mutations
based on a model trained on known data. ALoFT can also take as input a
five-column tab-delimited file containing chromosome, position, variant ID,
reference allele, and alternate allele as its columns
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Identification of pathogenic somatic LoF variants in cancer.
We applied our prediction method to infer the effect of somatic
premature stop variants (somatic pLoFs) from a compilation of
6535 cancer exomes40. As shown in Fig. 4, somatic pLoFs are
enriched in known cancer driver genes compared to randomly
sampled genes of matched lengths. Moreover, deleterious
somatic LoFs are strongly enriched in driver genes and
depleted in LoF-tolerant genes (genes that contain at least one
homozygous LoF variant in the 1KG population). In the context
of somatic mutations, variant zygosity, or distinguishing between
‘dominant’ and ‘recessive’ disease-causing mutations, is not
always relevant. Cancer cells may show aneuploidy and cellular
heterogeneity. Therefore, for the evaluation of somatic mutations,
we define an overall measure of deleteriousness as (1-benign
ALoFT score) on the X axis of Fig. 4.

We also evaluated ALoFT as a tool for distinguishing driver
LoF mutations from passenger LoF mutations in tumors with
high mutation burden. We observed a decrease in deleterious LoF
mutations with increasing total mutational burden (Fig. 5a).
However, the ratio of deleterious LoFs to total pLoFs displayed no
significant trend across groups (Fig. 5b). The ratio of deleterious
LoF mutations to total pLoF mutations is consistently high across
groups (84%). This may indicate that driver LoF events tend to
arise early in tumor development.

To classify genes as tumor suppressors, Vogelstein et al.41

proposed a “20/20” rule, whereby a gene is classified as a tumor
suppressor if >20% of the observed mutations in that gene are

inactivating mutations. Among the 210 genes that met 20/20
rule criteria, 87% of pLoF mutations affecting these genes
were deleterious LoFs, representing 21% of total mutations.
By comparison, only 6% of mutations were deleterious LoFs
among 11,892 genes that did not meet 20/20 criteria (p< 0.001,
chi-squared test) (Fig. 6). A list of these genes is provided as
Supplementary Data 3. In cases where genes display a high
somatic pLoF rate but low somatic deleterious LoF rate, ALoFT
may be used to identify potential false-positive driver genes
predicted by the 20/20 rule.

Distinguishing between benign and pathogenic pLoFs. Finally,
we applied ALoFT to predict the effect of premature stop variants
in the final exons of protein-coding genes. It is often assumed
that premature stop variants in the last coding exon are likely to
be benign because they could escape NMD; as a result, in
many cases, the effect will be the expression of a truncated
protein rather than a complete loss of function. However,
several examples of disease-causing mutations in the last exon
are known42. Therefore, we applied ALoFT to see if
we could distinguish between benign and disease-causing
LoF variants in the last coding exon. To this end, we applied
ALoFT to understand the effect of pLoF variants in ESP6500,
ExAC, and HGMD data sets. A higher proportion of rare variants
is observed in ESP6500 and ExAC cohorts due to their larger
sample size and higher sequencing depth (Fig. 7a). A large
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Fig. 2 ALoFT classification of pathogenic premature stop variants from Mendelian disease studies. a Dominant ALoFT, GERP, and CADD scores for ClinVar
and 1KG common (AF⩾ 1%) variants. All training variants are excluded. Average benign ALoFT scores are 0.097 and 0.115, respectively, for ClinVar
dominant and recessive data sets. AF denotes Allele Frequency. 1KG stands for 1000 Genomes Phase1 data. b Dominant ALoFT, GERP, and CADD scores
for pathogenic variants from the CMG studies. In these plots, the center line represents the median value of the data, the box goes from the first quartile to
the third quartile. The lower whisker goes from Q1 to the smallest non-outlier in the data set, and the upper whisker goes from Q3 to the largest non-outlier
in the data set. In addition, the data points are also plotted as open circles
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number of both common and rare premature stop variants
are seen at the end of the coding genes in the 1KG, ESP6500,
and ExAC data sets. In contrast, fewer disease-causing HGMD
variants are seen at the ends of coding genes (Fig. 7b). ALoFT
predicts that both common and rare premature stop variants in
the last coding exon in the 1KG, ESP6500, and ExAC cohort
are likely to be benign, whereas HGMD mutations in the
last coding exon tend to be disease-causing (Fig. 7b). Thus,
ALoFT is able to differentiate between rare benign premature
stop variants seen in healthy individuals and rare disease-causing
HGMD alleles.

pLoFs in an individual genome. The above case studies clearly
illustrate the validity of the ALoFT score in elucidating the effect
of pLoF variants. In order to estimate the number of pLoF disease
alleles in a healthy individual, we applied ALoFT to premature
stop variants from the 1KG and ExAC data sets. The predicted
benign score for pLoFs in 1KG has a wide range of values (Fig. 8,
Supplementary Data 4). Furthermore, due to differences in
sequencing coverage and variant calling approaches, the number
of potential disease pLoFs per individual varies among
datasets. In general, the number increases with higher coverage
and larger cohorts where joint variant calling methods result in
improved sensitivity in the identification of rare variants.
To conservatively estimate a lower bound for per individual
statistics (Methods), we applied a stringent filtering strategy to
restrict to high confidence pLoFs. On average, each individual is a
carrier of at least two rare heterozygous premature stop alleles
that are predicted to be disease-causing in the homozygous state
(Supplementary Table 6) based on the 1KG Phase1 data. Current

estimates of the genetic burden of disease alleles (all types
of variation, including LoFs) in an individual vary widely,
ranging from 1.1 recessive alleles per individual to 31 deleterious
alleles43–47. In connection with this, it should be noted that the
referenced studies are based on diverse methods of identifying
variants ranging from targeted panel-based candidate gene
studies to whole-genome sequencing. The estimation of
the number of deleterious pLoF alleles can be affected by a
number of confounding factors that include incomplete
penetrance of disease alleles, variable expressivity, compensatory
mutations, marginal variant calls, and imperfect training data sets
(Methods).

Next, we looked at premature stop variants in the 1KG
cohort in known disease-causing genes. We find that variants
in 1KG are more likely to be benign compared to known disease-
causing mutations in the same genes (Fig. 8; green vs. blue
boxes, p-value: 6.9e−9). Our results provide a possible rationale
for this observation. Firstly, variants predicted to be benign in
1KG often affect isoforms that are different from the
isoforms containing the disease-causing HGMD variant. This
suggests that LoFs in healthy individuals may affect minor
isoforms (Supplementary Fig. 3). About 12.4% of premature
stop variants in the presumed healthy 1KG individuals occur in
known disease genes and the disease-causing variants in the
same genes are on different isoforms. Secondly, some variants
predicted to be benign in 1KG occur in the last exon or later in
the protein-coding transcript relative to the disease-causing
variant in the same transcript. The effect of such variants is
possibly the production of truncated proteins that are sufficiently
functional. Lastly, a majority of 1KG variants seen in disease
genes are predicted to be disease-causing only if they are
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homozygous. However, they occur as rare heterozygous variants
in the 1KG cohort.

Mutations in HGMD are assumed to be disease-causing.
However, some mutations are predicted to be benign by ALoFT
(Fig. 8). It is known that disease databases include incorrect
disease annotations and common variants and about 27% of
variants were excluded by Bell et al.43 in their estimate of carrier
burden for severe recessive diseases. However, overall only 0.67%
of HGMD premature stop mutations are predicted to be benign.
Supplementary Fig. 4 shows that most mutations predicted to be
benign by ALoFT are seen at higher allele frequencies than those
predicted to be in the dominant and recessive classes. Of the 119
pLoF autosomal variants in HGMD predicted to be benign by
ALoFT, 32 variants are in Filaggrin, FLG. FLG LoF mutations are
linked to susceptibility to atopic dermatitis, a skin condition
leading to eczema. Eczema is a complex trait and the resulting
phenotypes are highly variable due to the interplay of environ-
mental and genetic factors. A recent study showed that
individuals with bi-alleleic null variants of FLG do not always
have atopic dermatitis48.

A study on British Pakistanis with related parents identified
781 genes containing rare homozygous LoF variants49. They
found homozygous LoF variants in recessive Mendelian disease
genes; however, carriers of most of these homozygous LoF
variants do not have the disease phenotype. We applied ALoFT to
classify these homozygous LoF variants. Of the 22 variants for
which ALoFT provides predictions, 3 are predicted to be benign
and none of them were predicted to lead to disease by the
dominant mode of inheritance. However, 19 homozygous
variants are indeed predicted to lead to disease with a recessive
mode of inheritance (Supplementary Data 5). The lack of a
discernible phenotype could be due to incomplete penetrance of
the mutations or due to modifier effects. The penetrance of some
disease mutations are also known to be age dependent and sex
dependent50. While studies in consanguineous populations have

been used to identify recessive disease genes51, the absence of
disease provides an opportunity to look for modifiers in their
genetic background.

Discussion
In summary, we describe ALoFT, a tool for predicting the impact
of pLoF variants. In the context of a diploid model, it may be used
to determine whether pLoF variants are likely to lead to recessive
or dominant disease. Better identification and characterization
of pLoF variants have both diagnostic and therapeutic
implications. ALoFT allows for the identification and
prioritization of high-impact putative disease-causing pLoF
variants in individual genomes. Integrating benign LoF
variants with phenotypic information will help us to identify
protective variants that are valuable drug targets52. Gene
functions important for species propagation might actually
be deleterious as one ages; thus, LoF variants in such genes
provide an intriguing avenue to discover targets for aging-related
diseases53. Lastly, diseases caused by LoF variants provide
opportunities for targeted therapy using drugs that either enable
read-through of the premature stop, thus restoring the function of
the mutant protein, or NMD inhibitors that prevent degradation
of the LoF-containing transcript by NMD54, 55. This is especially
useful in the context of rare diseases where targeting the same
molecular phenotype leading to different diseases alleviates the
need to design a new drug for each individual disease.
Further work will be needed both to correlate the predictions of
ALoFT with experimental assays of protein LoF and to study the
phenotypic impact of heterozygous and homozygous LoF variants
in large clinical cohorts.

Methods
Overview of ALoFT annotation pipeline. ALoFT provides extensive annotation
for SNPs that introduce a premature stop codon, SNPs affecting splice sites, and
indels that lead to frameshift. Initial sequence-based annotation of coding variants
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is performed by the Variant Annotation Tool56 (VAT). The output of VAT is
augmented with various features specific to pLoF variants. The input files can be in
VCF format or a tab-delimited 5-column file that includes chromosome, variant
position, variant ID, reference allele, and alternate allele. LoF variants annotated
with various features are output as three separate files: a VCF-formatted file
containing summarized annotations, a Tab-delimited file containing extensive
annotations for premature stop variants and indels leading to frameshift, a
tab-delimited file containing annotations for variants that affect the canonical
splice sites.

The output of ALoFT annotation pipeline is discussed below and the overview
of the pipeline is shown in Supplementary Fig. 1.

Feature annotation. In total, we used 108 features to train our model
(Supplementary Data 1). In terms of functional features, we annotated domains
affected by pLoF variants with PFAM and SMART domain information. The 3D
structure of a protein is essential for proper folding and function of proteins.
Therefore, we incorporated two structure-based features, SCOP domains, and

disordered residues, into our pipeline. In addition, we annotated signal peptide
and trans-membrane domains. PFAM, SCOP, signal peptide, and trans-membrane
domain annotations were obtained by querying Ensembl Release 73 using the
Ensembl PERL API57. Post-translationally modified residues (phosphorylated,
acetylated, and ubiquitinated sites) are annotated based on data from Phosphosi-
tePlus25. Disordered residues are known to be important in protein–protein
interaction surfaces and have been implicated in disease-causing mechanisms58, 59.
We obtained disordered residues in proteins using DISOPRED24. For all functional
features, we addressed the following questions: (1) does the premature stop variant
affect a functional feature? and (2) are functional, structural, or other domains
removed due to truncation?

Nonsense-mediated decay (NMD) is a cellular surveillance mechanism whereby
transcripts containing premature stop codons are removed to prevent aberrant
transcripts and protein products. NMD can be used as a feature to assess whether a
transcript containing a pLoF variant will be functional. We therefore included
NMD prediction as a functional feature and identified transcripts containing pLoF
variants as candidates for NMD if the distance of the premature stop from the last
exon–exon junction was >50 base pairs.

As network features, we calculated proximity parameters for each pLoF-affected
gene that correspond to the number of disease genes directly connected to it in
a protein–protein interaction network. Human protein–protein interaction
networks were downloaded from BioGrid60 (the version used is BIOGRID-
ORGANISM-Homo_sapiens-3.2.95). Dominant and recessive disease genes were
obtained from lists curated from OMIM61–63. Shortest path from a gene to the
nearest disease gene in the protein–protein interaction network is also included in
the ALoFT output.

The evolutionary features considered by ALoFT include the GERP score of
the pLoF variant position. In the case of indels, the mean GERP score is provided.
In addition, ALoFT evaluates the evolutionary conservation of the region that is
lost due to the truncation. This is calculated as the percentage of coding region lost
that occurs in GERP-constrained elements. dN/dS values for human-macaque and
human-mouse orthologs were obtained from Ensembl using Biomart.

ALoFT also includes all annotation features derived from VAT. This includes
transcript-specific annotation of the coding SNP. In addition, ALoFT provides
allele frequency information for the variants based on reference population studies.
Specifically, ALoFT output includes allele frequency information for LoF
variants from the Phase1 of 1000 Genomes Project (1KG), ESP6500, as well as
ExAC data sets. 1KG includes genetic variation data obtained from whole
genome and exome sequencing of 1092 healthy individuals. ESP6500 consists
of genetic variants from exome sequencing of a cohort of 2203 African-American
and 4300 European-American unrelated individuals enrolled in the National
Heart, Lung, and Blood Institute Exome Sequencing Project3. The ESP6500 data
set was downloaded from Exome Variant Server, NHLBI GO Exome
Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/)
(8 November 2013). Version 0.3 of the ExAC data set was downloaded from http://
exac.broadinstitute.org/, containing 60,706 unrelated individuals sequenced as part
of various disease-specific and population genetic studies30. An overview of all the
features output by ALoFT is shown in Supplementary Table 1.
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Fig. 5 Accumulation of deleterious LoF variants. a The top panel depicts the
accumulation of deleterious LoF variants vs. total non-silent variants. For
this analysis, following four different intervals were defined based on
mutation burden: <100 mutations (N= 741 samples), 100–1000 mutations
(N= 202 samples), 1000–10,000 mutations (N= 37 samples), and
>10,000 mutations (N= 18). Non-silent variants include missense variants
and putative loss-of-function (pLoF) variants. b The bottom panel depicts
the accumulation of deleterious LoF variants vs. total pLoF variants. In both
box plots, the center line represents the median value of the data, the box
goes from the first quartile to the third quartile. The lower whisker goes
from Q1 to the smallest non-outlier in the data set, and the upper whisker
goes from Q3 to the largest non-outlier in the data set. Outliers are
indicated by the plotted points
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To account for gene conservation, we calculated synonymous and
non-synonymous SNP density based on variation data from 1KG, average GERP
scores of synonymous and non-synonymous SNPs, the percentage of synonymous
and non-synonymous SNPs in GERP-constrained elements, the percentage of
coding transcript overlapping with constrained GERP elements, and average
heterozygosity for synonymous and non-synonymous SNPs in 1KG. Gene
centrality scores were obtained for various networks from Khurana et al.64

Transcript expression levels in 25 tissues from GTex65. For each transcript,
we calculated the average expression values across individuals for a particular
tissue. Tissue specificity is calculated using a Shannon entropy-based method66.
Number of validated miRNA binding sites per gene were obtained from

miRWalk67. Average heterozygosity was calculated as
P

2pq

l , where p is minor allele
frequency, q is the reference allele frequency, l is the length of the coding transcript.

Accounting for annotation errors and mismapping errors. In order to reduce
mismapping errors, ALoFT flags potential false-positive variant calls by identifying
homologous regions in the genome where the potential for mismapping is high.
This includes variants in segmentally duplicated regions, variants in genes that
have paralogs, and variants in genes that have pseudogenes. 51,599 regions of the
human genome are annotated as segmentally duplicated regions that are at least 1
kb in length and whose sequences are >90% identical. Paralogs of human genes
were obtained from Ensembl, with 11,658 genes having paralogs. Pseudogene
information was derived from the GENCODE pseudogene resource68. 3392 genes
have pseudogenes.

Variants that lead to a premature Stop codon, indels that lead to frameshift and
variants in splice sites are annotated as pLoF variants based on sequence
annotation and are assumed to lead to loss of function. However, this assumption is
not always valid. Categories of LoF annotation errors have been evaluated and
elucidated in the first systematic catalog of loss-of-function genes2. Thus, the
various ways that an inferred LoF annotation may be incorrect are captured by
ALoFT using several flags. lof_anc: indicates that the pLoF variant allele is the same
as the ancestral allele. Evolutionarily conserved alleles imply that they are likely to
be biologically important and thus represent functional alleles. Therefore, when the
pLoF variant is same as the ancestral allele, we believe that it is a functional allele.
near_start: The variant is in the first 5% of the coding sequence. near_end: The
variant is in the last 5% of the coding sequence. alt_canonical_site: SNPs in splice
sites are flagged as potentially not LoF when the alternate allele represents the
canonical splice site (i.e., when the alternate allele is GT at the donor or AG at the
acceptor site). noncanonical_splice_flank: variants in exons that are flanked by
noncanonical splice sites. Some of these exons could be due to spurious exon
annotations in the gene models. Small_intron: variants in introns <15 bp long.

Pathogenicity prediction for pLoF mutations. To predict the pathogenicity of
pLoF variants, we trained a random forest model to differentiate between benign,
heterozygous, and homozygous disease-causing premature stop variants. For the
training data, we only used premature stop variants caused by single-nucleotide
polymorphisms because indel calling methods are not yet robust. The benign
variant set includes homozygous variants from 1KG. Premature stop mutations
leading to disease were obtained from HGMD. To minimize errors due to
mistakes in HGMD, we only used high-confidence mutations labeled as “DM”
(disease-causing mutations) in HGMD. We used the variation and gene-specific
features that are output by ALoFT to build the classifier. We also included
gene/transcript-specific features, which take into account the effects of length and
the background mutation rate for each gene.

As training data, we identified benign premature stop variants as SNPs that are
homozygous in at least one individual in 1KG. Premature stop mutations from
HGMD are classified as those causing recessive or dominant disease based on
‘recessive’ and ‘dominant’ genes curated from the Online Mendelian Inheritance in
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Man database, OMIM61, 62. The training data consist of variants from autosomes
only. Mutations that lead to dominant inheritance of diseases can do so both via
loss-of-function mechanisms as well as gain-of-function mechanisms. However, it
is reasonable to assume that most pLoF variants in dominant disease genes cause
loss of function. Nonetheless, we only included dominant genes predicted to be
haplo-insufficient22 in the training data to make sure that we are predominantly
probing loss-of-function effects. The final training data set was derived from 397
benign premature stop variants (in 380 genes), 3300 dominant premature stop
variants (in 136 genes), and 5342 recessive premature stop mutations (in 796
genes) (Supplementary Table 2).

In order to classify loss-of-function mutations, descriptive features are
transformed into binary values - −1” and “1”, e.g., whether or not truncating a
PFAM domain. Missing values are replaced with the weighted average of the three
prediction classes. We then use a random forest algorithm to train our model and
evaluated the performance with 10-fold cross-validations. To reduce bias, we
included only one variant per gene in the training data for the benign and recessive
classes. The average number of dominant mutations per gene is 24 (Supplementary
Table 2). Therefore, we randomly selected three variants per gene for the dominant
class in order to obtain a reasonably balanced training data set. The variant is
picked randomly from the list of mutations and the longest affected transcript is
used. Thus, each training model was based on 380 benign premature stop variants,
~341 dominant mutations, and 796 recessive mutations. Stratified sampling is used
in the random forest model to achieve balanced three-class training.

We repeated this process 40 times. We calculated multi-class AUC for the test
set using the methodology developed by Hand and Till69. We assigned the class
with the highest probability as the predicted outcome.

Classifier performance evaluation. In cases where ALoFT returns a similar
probability of classification between classes, there is uncertainty in the predicted
class. By calculating the standard deviation of class probabilities across our 40
trained random forest models, we obtain a 95% confidence interval for ALoFT
predictions. If the confidence interval of the predicted class probability
overlaps with the confidence interval of either of the two less likely
classifications (single-sided test), we attach the label ‘Low Confidence’ (p> 0.05) to
the prediction. Otherwise the prediction is labeled ‘High Confidence’ (p < 0.05).

Supplementary Fig. 5 shows the precision calculations for 5 out of the 40
training models. Precision is calculated as the fraction of true positives among
predictions. As an example, for recessive predictions, we counted the number of
correct predictions as true positives, the rest of the recessive predictions as false
positives.

Precision ¼ True positives
True positivesþ False positives

Recall is calculated as:

Recall ¼ True positives
True positivesþ False negatives

We evaluated the robustness of the classifier by using several different training
data sets for the prediction. The classifier performs well for all the training data sets
as shown in Supplementary Table 3.

Olfactory receptor genes have many pseudogenes and accumulate many LoF
mutations70. Therefore, the training data for benign pLoF variants have a higher
proportion of high-frequency pLoF variants from this class of genes. In order to
avoid any potential bias arising due to this factor, we validated the robustness
of our model by excluding olfactory receptors. Similarly, we show that the
model performs well whether we choose variants from the longest isoform of a
gene for the training data or choose any one of the isoforms of the gene. In addition
to LoF effects, truncating mutations can also lead to gain of function. However,
gain-of-function mutations are difficult to model systematically as the effect of a
variant is very context dependent. In order to minimize errors that might arise due
to inadequate modeling of gain-of-function effects and focus only on LoF, we use
predicted haploinsufficient genes as the dominant training set in the final model.
However, we show that even a model where the training data for the dominant
class is derived from all dominant genes, the prediction is robust.

Determining feature importance. In Supplementary Fig. 2, the importance of a
feature is calculated by evaluating the decrease in mean accuracy of the test set
when the value of the feature is randomly permuted. The importance plot is not
directly interpretable because some of the prediction variables are correlated. The
description of the features can be found in Supplementary Data 1.

To further evaluate the features important for the classification, we built several
prediction models using different sets of features for the training. Supplementary
Table 4 shows the features used for prediction and their corresponding multi-class
AUC of the test set.

Application of ALoFT to sequencing study data. We applied our method to
classify Mendelian pathogenic mutations discovered in the Center For Mendelian
Genomics studies (CMG)33. After excluding training variants, there are 3 dominant
and 5 recessive premature stop mutations. We also obtained GERP and CADD32

scores for these variants (Fig. 2b).
ClinVar31 variants were obtained from https://github.com/macarthur-lab/

clinvar. In order to validate ALoFT predictions, we first excluded all ClinVar
variants in genes that were used in the training set. We then labeled the remaining
ClinVar variants as those leading to disease via the dominant or recessive mode of
inheritance using an orthogonal list of dominant/recessive genes obtained from
Berg et al.71 To avoid potential bias that might arise due to enrichment of disease
variants in particular genes, we randomly picked one variant per gene for the
analysis shown in Fig. 2a. The final set used to validate ALoFT contains 197
variants in genes known to cause disease through the dominant mode of
inheritance and 111 variants in recessive genes.

We collected de novo premature stop mutations from four autism studies34–37.
There are 19 and 53 mutations in siblings and probands, respectively. Most
individuals have one de novo premature stop mutation (Supplementary Table 5).
The prediction results are included in Supplementary Data 2 (2 out of 53 proband
mutations overlap our training data and are excluded in Fig. 3a).

We obtained the list of 33 confident autism genes (FDR< 0.1) from Rubeis
et al.39 and observed that dominant disease-causing score for premature stop
variants in these genes are significantly higher than those in other genes (Only de
novo pLoFs in probands are used; p-value: 5e−3; Wilcoxon rank-sum test; Fig. 3b).

We obtained somatic premature stop mutations from Alexandrov et al.40. This
includes 6535 exomes in 30 different cancer types. Cancer genes are from the
COSMIC cancer gene consensus72.

We used ALoFT as a tool to distinguish passenger vs. driver mutations in
tumors with high mutation burden. For this evaluation, we used ALoFT to identify
deleterious LoF mutations. We calculated the ratio of deleterious LoF mutations to
total pLoF mutations for the 6535 exome samples. We binned patient samples with
at least one deleterious LoF mutation according to total mutational burden.

We applied our method to classify premature stop variants in the healthy cohort
of 1092 individuals from the 1KG data. Among the 5495 premature stop variants
(excluding chrX), 148, 3070, and 2277 variants are predicted as dominant,
recessive, and tolerant, respectively (Supplementary Data 4).

Estimating LoF mutation burdening. In order to estimate the burden of
deleterious LoFs in an individual genome, we calculated the average number of
premature stop variants predicted to be deleterious by ALoFT using data from 1KG
Phase 1, 1KG Phase 3, and ExAC. Numerous confounding factors make it
difficult to compare genetic variation data from resequencing studies. For
example, the accuracy of variant calls varies depending on the sequencing depth,
and different data sets use different variant calling algorithms and different
metrics to evaluate the quality of variants resulting in differing sensitivity and
specificity of variant calls. Also, whole-genome sequencing and whole-exome
sequencing provide different genomic coverage, and among exome sequencing
studies, different exome capture platforms may have different definitions of exome
and different target enrichment efficiency.

1KG data consist of data obtained both based on exome capture as well as
whole-genome sequencing, whereas ExAC is based on exome capture data.

To minimize errors arising from the above-mentioned factors, we used a
filtering approach described below to obtain a conservative estimate of the burden
of deleterious premature stop variants in an individual genome.

We used high-confidence variants for the calculation of per individual statistics
for 1000 Genomes as described below. (1) While ALoFT provides several flags
that identify likely false positive variant calls arising due to mismapping and
annotation errors, we conservatively excluded only those pLoF variants that
correspond to the ancestral allele as they are unlikely to result in loss of function.
(2) Variants present at >12 alleles (~1% frequency for phase 1 and ~0.5% for
phase 3) in either the European or African-American population of the 1KG
cohort, but absent in the ESP6500 cohort were also removed as likely erroneous
calls. (3) For the 1KG Phase 1 set, only variants called from exome sequencing
(not available for Phase 3) were included in order to make a fair comparison
with the ESP6500 data that is also based on exome capture. We calculated per
individual statistics for predicted dominant, recessive, and benign premature
stop mutations and is shown in Supplementary Table 6 and Supplementary Fig. 6.
Per individual calculations are based on 246 individuals of African ancestry
and 379 individuals of European ancestry for 1KG Phase 1; 661 individuals of
African ancestry and 503 individuals of European ancestry for 1KG Phase 3.
For ExAC per individual calculation, no filtering was applied as we do not want
to remove true variant calls that might be present in this data set due to
higher sequence coverage. Furthermore, ExAC contains data aggregated from
several disease exome sequencing projects such as inflammatory bowel disease,
GoT2D (Type 2 diabetes) consortium, myocardial infarction genetics
consortium etc. and some of the variants might be true disease-causing variants.
Thus, our approach provides a lower estimate of the number of potentially
deleterious pLoF variants in healthy individuals based on the value from 1KG
Phase1 calculation.
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Data availability. The ALoFT software can be downloaded from aloft.gersteinlab.
org. All ancillary files needed to run the program are included with this
download and described in the Methods section. All analyzed data have been
included as Supplementary Data 1–5. Pre-calculated exome-wide ALoFT scores
for all base substitutions that potentially lead to a premature stop codon can
be downloaded for both HG19 and GRCh38 human genome reference from
aloft.gersteinlab.org.
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